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Herringbone pattern for an anisotropic complex Swift-Hohenberg equation
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We show using numerical simulations that herringbone type traveling wave patterns arise as a dissipative
structure in an anisotropic complex Swift-Hohenberg equation. In the herringbone pattern, zig and zag rolls
alternate spatially along thedirection. The herringbone pattern becomes unstable as a control parameter is
changed, then irregular patches of zig and zag structures appa@63-651X98)15312-4

PACS numbegps): 47.20.Ky, 47.54+r, 05.70.Ln

Various types of pattern formation have been studied ird,=d;+id] and d,=d;+id5, d;=d}+id} are complex
many spatially extended dissipative systehp Wave pat-  coefficients for the nonlinear terms, aads a control param-
terns are dissipative structures generated by the oscillatorter. The parametets f, andf,~f,, are determined from
instability setting in at a finite wavelength of small ampli- a linear dispersion relation. Wave patterns with specific wave
tude. There are two kinds of wave patterns, i.e., travelingsectors (- qoy, +oy) appear at the instability poiat=0. In
waves and standing waves. Traveling waves were found ithis paper we assumie= 1/4, d3=0, do,=0o,=1 for the
experiments of binary fluidg2] and in electrohydrodynamic sake of simplicity. Ifa is sufficiently small, we can express

convection of liquid crystals. The chevron patterns in liquidas a linear combination of the right-traveling zig-zag modes
crystals are composed of traveling wave patterns and takgnd left-traveling zig-zag modes:

herringbonelike structures in a certain parameter region
[3,4]. Recently a localized traveling wave pattern and chaotic

. ' — i(doxX+doyy + wt)
traveling wave patterns composed of zig and zag rolls were u=W,.(xy.te

found in experiments on liquid crystds,6]. +W__,(X,y,t)e! ("Gt doyy+wt)
The complex Swift-Hohenberg equation has been studied i
as a model equation for traveling wave patterns as a dissipa- +W, _(x,y,t)€!(Gox~doyy+ et

tive structure[7,8]. Localized traveling wave patterns were
found in numerical simulations of the complex Swift-
Hohenberg equatiof9,10]. In this paper, we show using
numerical simulations that herringbone type traveling waveyhere W, , ~W__ are complex amplitudes for the four
patterns and chaotic patterns arise in an anisotropic compleaveling wave modes ana=fo— f 1,03, + f 50— flngy

Swift-Hohenberg equation. _ +1,,05, is the frequency of the waves. If only one of the
As an anisotropic model equation, we study the complexq complex amplitudes is not zero, there appears an ob-
Swift-Hohenberg equation, which takes the form liquely traveling wave pattern. If all of the four complex
amplitudes are not zero and the amplitudes have the same
magnitude, there appears a rectangular type standing wave
pattern. Which type of wave pattern arises depends on the

+W__(x,y,t)e'( 9o~ doytet)

du=(a+ifo)u—b{(8,+ dx)?+(ad,+ dyy)3u

+i(F1x0xut Toxdoooct F1ydyy+ Foydyyyy)U relative magnitude of the complex coefficiedts~d; for the
) ) ) nonlinear terms. We consider a case in which oMy, and
—dy|ul?u—d,|dyul“u—ds|ayul®u, (1) w_, are not zero. Ifa is sufficiently small, we can derive

the coupled complex Ginzburg-Landau equations\iéy ,
whereu is the complex order parameter for a wave patternandW_, as

OW,y =aW, o+ (=2, +4F5,) W,y o+ (= 2f 1y +4F5)) W, o H{1H+T(F 1= 620 }Ixx Wi +
+{1+i(fly_6f2y)}<9yyw++_(d1+d2)|W++|2W++_2d1|W7+|2W++ )

GW_, =aW_, — (= 2f 1, +4F ) G W, +(—2F 1+ 4F ) G W, +{1+i(F1,— 6 )} dW_,
{1+ (F1y— 6Ty AW — (dy+do) [W_ 4 [PW_, —2d; W, [PW_, . )
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There are two types of spatially uniform solutions to E2). (a)
One is a zig or zag type obliquely traveling wave solu- 5000 farvvwwwivwwwwnisawhnanannd
tion: |W,,.|=val(dij+dy), W_,=0, or [W_,| ANV
=\/a/(d;+d}), W, , =0, and the other is a rectangular type 4000 B A NNV
traveling wave solution]W, ,|=|W_,|=+a/(3d;+d)). o 3000 W
We studied the coupled complex Ginzburg-Landau equations £ W
for the cased;<dj) anda=1 in one dimensiorf11]. We 2000 P A
have found various complicated dynamical behavior in the A A A AN
coupled complex Ginzburg-Landau equations. In a parameter 1000 ARV A
range, the spatially uniform solution, which satisfigs, _ | o (AR
=|W_,|#0, loses its stability and then a spatially periodic 0 50 100 150 200
structure appears. In the spatially periodic structure, X
W, ,-dominant regions aw_+|—dor1|1inant| regions alter- (b)
nate in space. The amplitugd/, . | (or|W_|) takes a form T
similar to the solitonlike solution for the single complex 2500 \”wm&%
Ginzburg-Landau equation in eadM, . -(or W_,-) domi- 2000 &w&%&%@%&%@w;&w
nant region. A ANV
We show first some numerical results for the one- o 1500 AR AN

We _ B )

dimensional version of Eq1), = AN AN AN

1000

et
e
e
Sl
L
e

B
=

du=(a+if o)u—b(Gd,+ dx) 2U+i(f1x0xt f2xduxxdU

—dy|ul?u—d|dyul?u, &)

500

o

&

which is obtained by omitting the terms includidg in Eq.

(1). We have used a pseudospectral method with 512 modes.
The system sizé is 644, the time stepAt is 0.005 and
periodic boundary conditions are implemented. We have 2500 p
taken u(x,0)=0.05expigyX)+ random noise as an initial
condition. Figure 1 shows some results of numerical simula-
tion for Eq. (3). The parameters ard,;=0.45-1.6, d,
=0.55+2.2, qo=1, f1,=1.5, f,,=0.75 and the control
parameten is changed. The parameters are in the parameter 1000
region where the spatially periodic pattern has appeared in

the coupled complex Ginzburg-Landau equati®)s Figure 500
1(a) displays a time evolution of Re after an initial tran- 0
sient time T=1500 ata=0.01. Initially a traveling wave
patternu~exp@oX+wt) appears, but the amplitude of the

inversely traveling wave mode grows sinte<d,. A regu- FIG. 1. Time evolution of Re for the one-dimensional com-
lar standing wave state is also unstable for the parametergiex Swift-Hohenberg equation &) a=0.01,(b) a=0.04, and(c)
After an initial transient time, a spatially periodic structure a=0.1 for d;=0.45-1.6, d,=0.55+2.2, qoy=1, f1,=1.5, fo

appears, in which left-traveling and right-traveling wave pat-=0.75. The time in the ordinate indicates the original tinminus
terns alternate in space. In other words, sinks and sources tfe initial transient timeT.

the inversely traveling waves are generated periodically in

space. The interval between a sink and the neighboringtic pattern appears. Figurécl displays a time evolution of
source isL/4 ata=0.01. Figure {b) displays a time evolu- Reu at a=0.1. The whole space is roughly separated into
tion of Reu at a=0.04. Similar spatially periodic structure two regions. One is a fairly regular regigroughly x<50
appears but the interval between a sink and the neighboringnd x>150) where left- and right-traveling wave patterns
source isL/8. If the coupled complex Ginzburg-Landau and a sink between the inversely traveling wave patterns are
equations are a good approximation to the complex Swiftseen. In the other region (§x<150), irregular motion ap-
Hohenberg equation for sufficiently smalland the group pears. The irregular pattern becomes dominant @s in-
velocity term in proportion to 2;,—4f,, can be neglected, creased.

Eq. (2) can be transformed to a normal form wah=1 by a We have performed numerical simulation in two dimen-
scale changex— /ax, t—at, W—+/aW. Therefore, the in- sions for the parameterd,=0.45-1.6/, d,=0.55+2.2,
terval between the neighboring sink and source is expectegy,=qo,=1, fi1,=1.5, f5,=0.75, f;,=—0.6, and f,,=

to decrease as {4, asa is increased. A= is further in-  —0.3. The parameter values 6f, and f,, do not induce
creased, the interval is decreased to the same order as timstability along they direction in themselves. The system
wavelength of the traveling waves and then the approximasize isL, X L= 64X 167 and the pseudospectral method is
tion by the coupled complex Ginzburg-Landau equation isused for the numerical simulations. We have taken
not good. Our numerical simulation shows that the spatially=0.05expi@o,X+idg,y)+random noise as an initial condi-
periodic structure becomes unstable é+0.09 and a cha- tion. Figure Za) displays a snapshot pattern of Ret a
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lines. The sink and source lines do not move at the param-
eter. Figure th) displays a snapshot pattern of Ret a
=0.1. There appear two regions similarly to the one dimen-
sional case of Fig. (t). One is a fairly regular region that is
composed of zig and zag traveling wave patterns and a
o o 100 150 200 straight boundary line betwe_en the zig and zag patterns. On

x the other hand, the boundaries between the zig and zag pat-
terns are curved in the other irregular region. The time evo-
lution is chaotic in the latter region, and the chaotic motion
induces inhomogeneity in thg direction and makes the
boundary lines curved. The transition from a one-
dimensional chaotic pattern, in which the pattern is homoge-
neous along the direction, to a two-dimensional chaotic
pattern was studied also for another anisotropic model equa-
tion [12]. As a is further increased, the fairly regular region
disappears and the whole region is composed of irregular
patches of zig and zag patterns. Figufe) 2lisplays such an
irregular pattern of Ra ata=0.8.

To summarize, we have performed one- and two-
dimensional simulations of the anisotropic complex Swift-
Hohenberg equation. The complex Swift-Hohenberg equa-
tion (1) has a large number of parameters and is expected to
exhibit various dynamical behavior depending on the param-
eters. We have studied a parameter region where both the

FIG. 2. Snapshot patterns of Réor the two-dimensional com- o types of spatially uniform solution$w, , |#0, |W_, |
plex Swift-Hohenberg equation &) a=0.04,(b) a=0.1, and(c) =0 (W..|=0, |W_,|#0) and |W,.|=|W_,|#0 are
a=0.8 forf, = —0.6,,=—0.3,qo,=1. The other parameters are ,nsiaple. We have found a spatially periodic pattern com-
the same as for Fig. 1. In the shaded regionuR®. posed of inversely traveling waves in one dimension. The

spatially periodic structure arises as a herringbone pattern in
=0.04. A herringbone pattern appears after an initial trantwo dimensions. As a control parameteis increased, more
sient time. The herringbone pattern is composed of zig anéregular patterns appear. The herringbone patterns and the
zag type traveling wave patterns. There exist sink and sourderegular zig-zag patterns may have some relation to the
lines between the zig and zag patterns. The traveling wavesomplex traveling wave patterns found in experiments of
are emitted from the source lines and absorbed into the sinliquid crystals[3-6].
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