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Herringbone pattern for an anisotropic complex Swift-Hohenberg equation

Hidetsugu Sakaguchi
Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences,

Kyushu University, Kasuga, Fukuoka 816-8580, Japan
~Received 16 June 1998!

We show using numerical simulations that herringbone type traveling wave patterns arise as a dissipative
structure in an anisotropic complex Swift-Hohenberg equation. In the herringbone pattern, zig and zag rolls
alternate spatially along thex direction. The herringbone pattern becomes unstable as a control parameter is
changed, then irregular patches of zig and zag structures appear.@S1063-651X~98!15312-6#

PACS number~s!: 47.20.Ky, 47.54.1r, 05.70.Ln
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Various types of pattern formation have been studied
many spatially extended dissipative systems@1#. Wave pat-
terns are dissipative structures generated by the oscilla
instability setting in at a finite wavelength of small amp
tude. There are two kinds of wave patterns, i.e., travel
waves and standing waves. Traveling waves were foun
experiments of binary fluids@2# and in electrohydrodynamic
convection of liquid crystals. The chevron patterns in liqu
crystals are composed of traveling wave patterns and
herringbonelike structures in a certain parameter reg
@3,4#. Recently a localized traveling wave pattern and chao
traveling wave patterns composed of zig and zag rolls w
found in experiments on liquid crystals@5,6#.

The complex Swift-Hohenberg equation has been stud
as a model equation for traveling wave patterns as a diss
tive structure@7,8#. Localized traveling wave patterns we
found in numerical simulations of the complex Swif
Hohenberg equation@9,10#. In this paper, we show usin
numerical simulations that herringbone type traveling wa
patterns and chaotic patterns arise in an anisotropic com
Swift-Hohenberg equation.

As an anisotropic model equation, we study the comp
Swift-Hohenberg equation, which takes the form

] tu5~a1 i f 0!u2b$~q0x
2 1]xx!

21~q0y
2 1]yy!

2%u

1 i ~ f 1x]xx1 f 2x]xxxx1 f 1y]yy1 f 2y]yyyy!u

2d1uuu2u2d2u]xuu2u2d3u]yuu2u, ~1!

whereu is the complex order parameter for a wave patte
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d15d181 id19 and d25d281 id29 , d35d381 id39 are complex
coefficients for the nonlinear terms, anda is a control param-
eter. The parametersb, f 0 and f 1x; f 2y are determined from
a linear dispersion relation. Wave patterns with specific wa
vectors (6q0x ,6q0y) appear at the instability pointa50. In
this paper we assumeb51/4, d350, q0x5q0y51 for the
sake of simplicity. Ifa is sufficiently small, we can expressu
as a linear combination of the right-traveling zig-zag mod
and left-traveling zig-zag modes:

u5W11~x,y,t !ei ~q0xx1q0yy1vt !

1W21~x,y,t !ei ~2q0xx1q0yy1vt !

1W12~x,y,t !ei ~q0xx2q0yy1vt !

1W22~x,y,t !ei ~2q0xx2q0yy1vt !,

where W11;W22 are complex amplitudes for the fou
traveling wave modes andv5 f 02 f 1xq0x

2 1 f 2xq0x
4 2 f 1yq0y

2

1 f 2yq0y
4 is the frequency of the waves. If only one of th

four complex amplitudes is not zero, there appears an
liquely traveling wave pattern. If all of the four comple
amplitudes are not zero and the amplitudes have the s
magnitude, there appears a rectangular type standing w
pattern. Which type of wave pattern arises depends on
relative magnitude of the complex coefficientsd1;d3 for the
nonlinear terms. We consider a case in which onlyW11 and
W21 are not zero. Ifa is sufficiently small, we can derive
the coupled complex Ginzburg-Landau equations forW11

andW21 as
] tW115aW111~22 f 1x14 f 2x!]xW111~22 f 1y14 f 2y!]yW111$11 i ~ f 1x26 f 2x!%]xxW11

1$11 i ~ f 1y26 f 2y!%]yyW112~d11d2!uW11u2W1122d1uW21u2W11 ,

] tW215aW212~22 f 1x14 f 2x!]xW211~22 f 1y14 f 2y!]yW211$11 i ~ f 1x26 f 2x!%]xxW21

1$11 i ~ f 1y26 f 2y!%]yyW212~d11d2!uW21u2W2122d1uW11u2W21 . ~2!
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There are two types of spatially uniform solutions to Eq.~2!.
One is a zig or zag type obliquely traveling wave so
tion: uW11u5Aa/(d181d28), W2150, or uW21u
5Aa/(d181d28), W1150, and the other is a rectangular typ
traveling wave solution:uW11u5uW21u5Aa/(3d181d28).
We studied the coupled complex Ginzburg-Landau equat
for the cased18,d28 and a51 in one dimension@11#. We
have found various complicated dynamical behavior in
coupled complex Ginzburg-Landau equations. In a param
range, the spatially uniform solution, which satisfiesuW11u
5uW21uÞ0, loses its stability and then a spatially period
structure appears. In the spatially periodic structu
W11-dominant regions andW21-dominant regions alter
nate in space. The amplitudeuW11u ~or uW21u) takes a form
similar to the solitonlike solution for the single comple
Ginzburg-Landau equation in eachW11-~or W21-! domi-
nant region.

We show first some numerical results for the on
dimensional version of Eq.~1!,

] tu5~a1 i f 0!u2b~q0x
2 1]xx!

2u1 i ~ f 1x]xx1 f 2x]xxxx!u

2d1uuu2u2d2u]xuu2u, ~3!

which is obtained by omitting the terms including]y in Eq.
~1!. We have used a pseudospectral method with 512 mo
The system sizeL is 64p, the time stepDt is 0.005 and
periodic boundary conditions are implemented. We ha
taken u(x,0)50.05exp(iq0xx)1 random noise as an initia
condition. Figure 1 shows some results of numerical simu
tion for Eq. ~3!. The parameters ared150.4521.6i , d2
50.5512.2i , q0x51, f 1x51.5, f 2x50.75 and the contro
parametera is changed. The parameters are in the param
region where the spatially periodic pattern has appeare
the coupled complex Ginzburg-Landau equations~2!. Figure
1~a! displays a time evolution of Reu after an initial tran-
sient time T51500 at a50.01. Initially a traveling wave
patternu;exp(q0xx1vt) appears, but the amplitude of th
inversely traveling wave mode grows sinced18,d28 . A regu-
lar standing wave state is also unstable for the parame
After an initial transient time, a spatially periodic structu
appears, in which left-traveling and right-traveling wave p
terns alternate in space. In other words, sinks and source
the inversely traveling waves are generated periodically
space. The interval between a sink and the neighbo
source isL/4 at a50.01. Figure 1~b! displays a time evolu-
tion of Reu at a50.04. Similar spatially periodic structur
appears but the interval between a sink and the neighbo
source isL/8. If the coupled complex Ginzburg-Landa
equations are a good approximation to the complex Sw
Hohenberg equation for sufficiently smalla and the group
velocity term in proportion to 2f 1x24 f 2x can be neglected
Eq. ~2! can be transformed to a normal form witha51 by a
scale change:x→Aax, t→at, W→AaW. Therefore, the in-
terval between the neighboring sink and source is expe
to decrease as 1/Aa, as a is increased. Asa is further in-
creased, the interval is decreased to the same order a
wavelength of the traveling waves and then the approxim
tion by the coupled complex Ginzburg-Landau equation
not good. Our numerical simulation shows that the spatia
periodic structure becomes unstable fora.0.09 and a cha-
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otic pattern appears. Figure 1~c! displays a time evolution of
Reu at a50.1. The whole space is roughly separated in
two regions. One is a fairly regular region~roughly x,50
and x.150) where left- and right-traveling wave patter
and a sink between the inversely traveling wave patterns
seen. In the other region (50,x,150), irregular motion ap-
pears. The irregular pattern becomes dominant asa is in-
creased.

We have performed numerical simulation in two dime
sions for the parametersd150.4521.6i , d250.5512.2i ,
q0x5q0y51, f 1x51.5, f 2x50.75, f 1y520.6, and f 2y5
20.3. The parameter values off 1y and f 2y do not induce
instability along they direction in themselves. The syste
size isLx3Ly564p316p and the pseudospectral method
used for the numerical simulations. We have takenu
50.05exp(iq0xx1iq0yy)1random noise as an initial cond
tion. Figure 2~a! displays a snapshot pattern of Reu at a

FIG. 1. Time evolution of Reu for the one-dimensional com
plex Swift-Hohenberg equation at~a! a50.01,~b! a50.04, and~c!
a50.1 for d150.4521.6i , d250.5512.2i , q0x51, f 1x51.5, f 2x

50.75. The time in the ordinate indicates the original timet minus
the initial transient timeT.
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50.04. A herringbone pattern appears after an initial tr
sient time. The herringbone pattern is composed of zig
zag type traveling wave patterns. There exist sink and so
lines between the zig and zag patterns. The traveling wa
are emitted from the source lines and absorbed into the

FIG. 2. Snapshot patterns of Reu for the two-dimensional com-
plex Swift-Hohenberg equation at~a! a50.04, ~b! a50.1, and~c!
a50.8 for f 1y520.6, f 2y520.3,q0y51. The other parameters ar
the same as for Fig. 1. In the shaded region, Reu.0.
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lines. The sink and source lines do not move at the par
eter. Figure 2~b! displays a snapshot pattern of Reu at a
50.1. There appear two regions similarly to the one dim
sional case of Fig. 1~c!. One is a fairly regular region that i
composed of zig and zag traveling wave patterns an
straight boundary line between the zig and zag patterns.
the other hand, the boundaries between the zig and zag
terns are curved in the other irregular region. The time e
lution is chaotic in the latter region, and the chaotic moti
induces inhomogeneity in they direction and makes the
boundary lines curved. The transition from a on
dimensional chaotic pattern, in which the pattern is homo
neous along they direction, to a two-dimensional chaoti
pattern was studied also for another anisotropic model eq
tion @12#. As a is further increased, the fairly regular regio
disappears and the whole region is composed of irreg
patches of zig and zag patterns. Figure 2~c! displays such an
irregular pattern of Reu at a50.8.

To summarize, we have performed one- and tw
dimensional simulations of the anisotropic complex Sw
Hohenberg equation. The complex Swift-Hohenberg eq
tion ~1! has a large number of parameters and is expecte
exhibit various dynamical behavior depending on the para
eters. We have studied a parameter region where both
two types of spatially uniform solutions:uW11uÞ0, uW21u
50 (uW11u50, uW21uÞ0) and uW11u5uW21uÞ0 are
unstable. We have found a spatially periodic pattern co
posed of inversely traveling waves in one dimension. T
spatially periodic structure arises as a herringbone patter
two dimensions. As a control parametera is increased, more
irregular patterns appear. The herringbone patterns and
irregular zig-zag patterns may have some relation to
complex traveling wave patterns found in experiments
liquid crystals@3–6#.
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